Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Biol Chem ; 299(4): 103028, 2023 04.
Article in English | MEDLINE | ID: covidwho-2242974

ABSTRACT

The emergence of SARS-CoV-2, which is responsible for the COVID-19 pandemic, has highlighted the need for rapid characterization of viral mechanisms associated with cellular pathogenesis. Viral UTRs represent conserved genomic elements that contribute to such mechanisms. Structural details of most CoV UTRs are not available, however. Experimental approaches are needed to allow for the facile generation of high-quality viral RNA tertiary structural models, which can facilitate comparative mechanistic efforts. By integrating experimental and computational techniques, we herein report the efficient characterization of conserved RNA structures within the 5'UTR of the HCoV-OC43 genome, a lab-tractable model coronavirus. We provide evidence that the 5'UTR folds into a structure with well-defined stem-loops (SLs) as determined by chemical probing and direct detection of hydrogen bonds by NMR. We combine experimental base-pair restraints with global structural information from SAXS to generate a 3D model that reveals that SL1-4 adopts a topologically constrained structure wherein SLs 3 and 4 coaxially stack. Coaxial stacking is mediated by short linker nucleotides and allows SLs 1 to 2 to sample different cojoint orientations by pivoting about the SL3,4 helical axis. To evaluate the functional relevance of the SL3,4 coaxial helix, we engineered luciferase reporter constructs harboring the HCoV-OC43 5'UTR with mutations designed to abrogate coaxial stacking. Our results reveal that the SL3,4 helix intrinsically represses translation efficiency since the destabilizing mutations correlate with increased luciferase expression relative to wildtype without affecting reporter mRNA levels, thus highlighting how the 5'UTR structure contributes to the viral mechanism.


Subject(s)
5' Untranslated Regions , Coronavirus OC43, Human , RNA, Viral , Coronavirus OC43, Human/genetics , Luciferases/genetics , Scattering, Small Angle , X-Ray Diffraction , RNA, Viral/genetics
2.
Microbiol Spectr ; 11(1): e0370722, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2193578

ABSTRACT

The SARS-CoV-2 virion is composed of four structural proteins: spike (S), nucleocapsid (N), membrane (M), and envelope (E). E spans the membrane a single time and is the smallest, yet most enigmatic of the structural proteins. E is conserved among coronaviruses and has an essential role in virus-mediated pathogenesis. We found that ectopic expression of E had deleterious effects on the host cell as it activated stress responses, leading to LC3 lipidation and phosphorylation of the translation initiation factor eIF2α that resulted in host translational shutoff. During infection E is highly expressed, although only a small fraction is incorporated into virions, suggesting that E activity is regulated and harnessed by the virus to its benefit. Consistently, we found that proteins from heterologous viruses, such as the γ1 34.5 protein of herpes simplex virus 1, prevented deleterious effects of E on the host cell and allowed for E protein accumulation. This observation prompted us to investigate whether other SARS-CoV-2 structural proteins regulate E. We found that the N and M proteins enabled E protein accumulation, whereas S did not. While γ1 34.5 protein prevented deleterious effects of E on the host cells, it had a negative effect on SARS-CoV-2 replication. The negative effect of γ1 34.5 was most likely associated with failure of SARS-CoV-2 to divert the translational machinery and with deregulation of autophagy. Overall, our data suggest that SARS-CoV-2 causes stress responses and subjugates these pathways, including host protein synthesis (phosphorylated eIF2α) and autophagy, to support optimal virus replication. IMPORTANCE In late 2019, a new ß-coronavirus, SARS-CoV-2, entered the human population causing a pandemic that has resulted in over 6 million deaths worldwide. Although closely related to SARS-CoV, the mechanisms of SARS-CoV-2 pathogenesis are not fully understood. We found that ectopic expression of the SARS-CoV-2 E protein had detrimental effects on the host cell, causing metabolic alterations, including shutoff of protein synthesis and mobilization of cellular resources through autophagy activation. Coexpression of E with viral proteins known to subvert host antiviral responses such as autophagy and translational inhibition, either from SARS-CoV-2 or from heterologous viruses, increased cell survival and E protein accumulation. However, such factors were found to negatively impact SARS-CoV-2 infection, as autophagy contributes to formation of viral membrane factories and translational control offers an advantage for viral gene expression. Overall, SARS-CoV-2 has evolved mechanisms to harness host functions that are essential for virus replication.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Autophagy , Protein Processing, Post-Translational , SARS-CoV-2/metabolism , Viral Proteins/genetics
3.
J Biol Chem ; 295(51): 17781-17801, 2020 12 18.
Article in English | MEDLINE | ID: covidwho-985572

ABSTRACT

Knockout mouse models have been extensively used to study the antiviral activity of IFIT (interferon-induced protein with tetratricopeptide repeats). Human IFIT1 binds to cap0 (m7GpppN) RNA, which lacks methylation on the first and second cap-proximal nucleotides (cap1, m7GpppNm, and cap2, m7GpppNmNm, respectively). These modifications are signatures of "self" in higher eukaryotes, whereas unmodified cap0-RNA is recognized as foreign and, therefore, potentially harmful to the host cell. IFIT1 inhibits translation at the initiation stage by competing with the cap-binding initiation factor complex, eIF4F, restricting infection by certain viruses that possess "nonself" cap0-mRNAs. However, in mice and other rodents, the IFIT1 orthologue has been lost, and the closely related Ifit1b has been duplicated twice, yielding three paralogues: Ifit1, Ifit1b, and Ifit1c. Although murine Ifit1 is similar to human IFIT1 in its cap0-RNA-binding selectivity, the roles of Ifit1b and Ifit1c are unknown. Here, we found that Ifit1b preferentially binds to cap1-RNA, whereas binding is much weaker to cap0- and cap2-RNA. In murine cells, we show that Ifit1b can modulate host translation and restrict WT mouse coronavirus infection. We found that Ifit1c acts as a stimulatory cofactor for both Ifit1 and Ifit1b, promoting their translation inhibition. In this way, Ifit1c acts in an analogous fashion to human IFIT3, which is a cofactor to human IFIT1. This work clarifies similarities and differences between the human and murine IFIT families to facilitate better design and interpretation of mouse models of human infection and sheds light on the evolutionary plasticity of the IFIT family.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Coronavirus/growth & development , Coronavirus/genetics , Protein Biosynthesis , RNA Cap-Binding Proteins/metabolism , RNA Caps/metabolism , RNA-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Coronavirus/metabolism , Disease Models, Animal , HEK293 Cells , Humans , Mice , Mice, Knockout , Models, Molecular , Mutation , Protein Binding , RAW 264.7 Cells , RNA-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL